Nanotechnology For The Energy Challenge, 2Nd Edition

Javier García-Martínez · Wiley - Vch

Ver Precio
Envío Gratis a todo México

Reseña del libro

Foreword Xv Preface To The 2Nd Edition Xvii Preface To The 1St Edition Xix List Of Contributors Xxi Part One Sustainable Energy Production 1 1 Nanotechnology For Energy Production 3Elena Serrano, Kunhao Li, Guillermo Rus, And Javier García - Martínez 1. 1 Energy Challenges In The Twenty - First Century And Nanotechnology 3 1. 2 Nanotechnology In Energy Production 6 1. 2. 1 Photovoltaics 6 1. 2. 2 Hydrogen Production 14 1. 2. 3 Fuel Cells 20 1. 2. 4 Thermoelectricity 27 1. 3 New Opportunities 28 1. 4 Outlook And Future Trends 33 Acknowledgments 34 References 34 2 Nanotechnology In Dye - Sensitized Photoelectrochemical Devices 41Augustin J. Mcevoy And Michael Grätzel 2. 1 Introduction 41 2. 2 Semiconductors And Optical Absorption 42 2. 3 Dye Molecular Engineering 46 2. 4 The Stable Self - Assembling Dye Monomolecular Layer 48 2. 5 The Nanostructured Semiconductor 50 2. 6 Recent Research Trends 52 2. 7 Conclusions 54 References 54 3 Thermal - Electrical Energy Conversion From The Nanotechnology Perspective 57Jian He And Terry M. Tritt 3. 1 Introduction 57 3. 2 Established Bulk Thermoelectric Materials 58 3. 3 Selection Criteria For Bulk Thermoelectric Materials 61 3. 4 Survey Of Size Effects 63 3. 4. 1 Classic Size Effects 64 3. 4. 2 Quantum Size Effects 65 3. 4. 3 Thermoelectricity Of Nanostructured Materials 66 3. 5 Thermoelectric Properties On The Nanoscale: Modeling And Metrology 68 3. 6 Experimental Results And Discussions 70 3. 6. 1 Bi Nanowire / Nanorod 70 3. 6. 2 Si Nanowire 72 3. 6. 3 Engineered Exotic Nanostructures 74 3. 6. 4 Thermionics 76 3. 6. 5 Thermoelectric Nanocomposites: A New Paradigm 78 3. 7 Summary And Perspectives 83 Acknowledgments 84 References 84 4 Piezoelectric And Piezotronic Effects In Energy Harvesting And Conversion 89Xudong Wang 4. 1 Introduction 89 4. 2 Piezoelectric Effect 90 4. 3 Piezoelectric Nanomaterials For Mechanical Energy Harvesting 91 4. 3. 1 Piezoelectric Potential Generated In A Nanowire 92 4. 3. 2 Enhanced Piezoelectric Effect From Nanomaterials 94 4. 3. 3 Nanogenerators For Nanoscale Mechanical Energy Harvesting 96 4. 3. 3. 1 Output Of Piezoelectric Potential From Nanowires 96 4. 3. 3. 2 The First Prototype Nanogenerator Driven By Ultrasonic Waves 98 4. 3. 3. 3 Output Power Estimation 99 4. 3. 4 Large - Scale And High - Output Nanogenerators 101 4. 3. 4. 1 Lateral Zno Nanowire - Based Nanogenerators 101 4. 3. 4. 2 Piezoelectric Polymer Thin Film - Based Nanogenerators 104 4. 4 Piezocatalysis - Conversion Between Mechanical And Chemical Energies 109 4. 4. 1 Fundamental Principles Of Piezocatalysis 109 4. 4. 2 Piezocatalyzed Water Splitting 110 4. 4. 3 Basic Kinetics Of Piezocatalyzed Water Splitting 112 4. 5 Piezotronics For Enhanced Energy Conversion 114 4. 5. 1 What Is The Piezotronic Effect? 115 4. 5. 2 Band Structure Engineering By Piezotronic Effect 115 4. 5. 2. 1 Remnant Polarization In Strained Piezoelectric Materials 115 4. 5. 2. 2 Interface Band Engineering By Remnant Piezopotential 116 4. 5. 2. 3 Quantitative Study Of Interface Barrier Height Engineering 118 4. 5. 3 Piezotronics Modulated Photovoltaic Effect 120 4. 5. 3. 1 Principle Of Piezotronic Band Structure Engineering 120 4. 5. 3. 2 Piezoelectric Polarization - Enhanced Photovoltaic Performance 122 4. 6 Perspectives And Conclusion 125 Acknowledgments 127 References 127 5 Graphene For Energy Production And Storage Applications 133Dale A. C. Brownson, Jonathan P. Metters, And Craig E. Banks 5. 1 Introduction 133 5. 2 Graphene Supercapacitors 135 5. 3 Graphene As A Battery / Lithium - Ion Storage 147 5. 4 Graphene In Energy Generation Devices 158 5. 4. 1 Fuel Cells 158 5. 4. 2 Microbial Biofuel Cells 161 5. 4. 3 Enzymatic Biofuel Cells 166 5. 5 Conclusions / Outlook 167 References 168 6 Nanomaterials For Fuel Cell Technologies 171Antonino Salvatore Aricò, Vincenzo Baglio, And Vincenzo Antonucci 6. 1 Introduction 171 6. 2 Low - Temperature Fuel Cells 172 6. 2. 1 Cathode Reaction 172 6. 2. 2 Anodic Reaction 178 6. 2. 3 Practical Fuel Cell Catalysts 180 6. 2. 4 Nonprecious Catalysts 189 6. 2. 5 Electrolytes 189 6. 2. 6 High - Temperature Polymer Electrolyte Membranes 191 6. 2. 7 Membrane - Electrode Assembly 196 6. 3 High - Temperature Fuel Cells 198 6. 3. 1 High - Temperature Ceramic Electrocatalysts 201 6. 3. 2 Direct Utilization Of Dry Hydrocarbons In Sofcs 204 6. 4 Conclusions 205 References 207 7 Nanocatalysis For Iron - Catalyzed Fischer - Tropsch Synthesis: One Perspective 213Uschi M. Graham, Gary Jacobs, And Burtron H. Davis 7. 1 Introduction 213 7. 2 Nanocatalyst - Wax Separation 213 7. 2. 1 Commercial Nanosized Iron Oxide 215 7. 2. 2 Nanosized Iron Oxide By Gas Phase Pyrolysis 218 7. 2. 3 Spray - Dried Clusters Of Nanosized Iron Oxide 218 7. 2. 4 Precipitation Of Unsymmetrical Nanosized Iron Oxide 220 7. 2. 5 Supported Iron Oxide Nanoparticles 221 7. 2. 6 Precipitation Of Nanosized Iron Oxide Particles 225 7. 3 Summary 229 References 229 8 The Contribution Of Nanotechnology To Hydrogen Production 233Sambandam Anandan, Jagannathan Madhavan, And Muthupandian Ashokkumar 8. 1 Introduction 233 8. 2 Hydrogen Production By Semiconductor Nanomaterials 235 8. 2. 1 General Approach 235 8. 2. 2 Need For Nanomaterials 236 8. 2. 3 Nanomaterials - Based Photoelectrochemical Cells For H2 Production 237 8. 2. 4 Semiconductors With Specific Morphology: Nanotubes And Nanodisks 239 8. 2. 5 Sensitization 245 8. 3 Summary 253 Acknowledgments 254 References 254 Part Two Efficient Energy Storage 259 9 Nanostructured Materials For Hydrogen Storage 261Saghar Sepehri And Guozhong Cao 9. 1 Introduction 261 9. 2 Hydrogen Storage By Physisorption 262 9. 2. 1 Nanostructured Carbon 263 9. 2. 2 Zeolites 264 9. 2. 3 Metal - Organic Frameworks 265 9. 2. 4 Clathrates 265 9. 2. 5 Polymers With Intrinsic Microporosity 266 9. 3 Hydrogen Storage By Chemisorption 266 9. 3. 1 Metal And Complex Hydrides 266 9. 3. 2 Chemical Hydrides 269 9. 3. 3 Nanocomposites 270 9. 4 Summary 273 References 273 10 Electrochemical Energy Storage: The Benefits Of Nanomaterials 277Patrice Simon And Jean - Marie Tarascon 10. 1 Introduction 277 10. 2 Nanomaterials For Energy Storage 280 10. 2. 1 From Rejected Insertion Materials To Attractive Electrode Materials 280 10. 2. 2 The Use Of Once Rejected Si - Based Electrodes 282 10. 2. 3 Conversion Reactions 283 10. 3 Nanostructured Electrodes And Interfaces For The Electrochemical Storage Of Energy 285 10. 3. 1 Nanostructuring Of Current Collectors / Active Film Interface 285 10. 3. 1. 1 Self - Supported Electrodes 285 10. 3. 1. 2 Nano - Architectured Current Collectors 285 10. 3. 2 Nanostructuring Of Active Material / Electrolyte Interfaces 290 10. 3. 2. 1 Application To Li - Ion Batteries: Mesoporous Chromium Oxides 290 10. 3. 2. 2 Application To Electrochemical Double - Layer Capacitors 291 10. 4 Conclusion 296 Acknowledgments 297 References 297 11 Carbon - Based Nanomaterials For Electrochemical Energy Storage 299Elzbieta Frackowiak And François Béguin 11. 1 Introduction 299 11. 2 Nanotexture And Surface Functionality Of Sp2 Carbons 299 11. 3 Supercapacitors 302 11. 3. 1 Principle Of A Supercapacitor 302 11. 3. 2 Carbons For Electric Double - Layer Capacitors 304 11. 3. 3 Carbon - Based Materials For Pseudo - Capacitors 307 11. 3. 3. 1 Pseudo - Capacitance Effects Related With Hydrogen Electrosorbed In Carbon 307 11. 3. 3. 2 Pseudo - Capacitive Oxides And Conducting Polymers 310 11. 3. 3. 3 Pseudo - Capacitive Effects Originated From Heteroatoms In The Carbon Network 312 11. 4 Lithium - Ion Batteries 316 11. 4. 1 Anodes Based On Nanostructured Carbons 317 11. 4. 2 Anodes Based On Si / C Composites 318 11. 4. 3 Origins Of Irreversible Capacity Of Carbon Anodes 321 11. 5 Conclusions 323 References 324 12 Nanotechnologies To Enable High - Performance Superconductors For Energy Applications 327Claudia Cantoni And Amit Goyal 12. 1 Overcoming Limitations To Superconductors Performance 327 12. 2 Flux Pinning By Nanoscale Defects 329 12. 3 Grain Boundary Problem 330 12. 4 Anisotropic Current Properties 332 12. 5 Enhancing Naturally Occurring Nanoscale Defects 335 12. 6 Artifi Cial Introduction Of Flux Pinning Nanostructures 337 12. 7 Self - Assembled Nanostructures 338 12. 8 Effect Of Local Strain Fields In Nanocomposite Films 344 12. 9 Control Of Epitaxy Enabling Atomic Sulfur Superstructure 347 Acknowledgments 349 References 350 Part Three Energy Sustainability 355 13 Green Nanofabrication: Unconventional Approaches For The Conservative Use Of Energy 357Darren J. Lipomi, Emily A. Weiss, And George M. Whitesides 13. 1 Introduction 357 13. 1. 1 Motivation 358 13. 1. 2 Energetic Costs Of Nanofabrication 359 13. 1. 3 Use Of Tools 360 13. 1. 4 Nontraditional Materials 362 13. 1. 5 Scope 362 13. 2 Green Approaches To Nanofabrication 364 13. 2. 1 Molding And Embossing 364 13. 2. 1. 1 Hard Pattern Transfer Elements 364 13. 2. 1. 2 Soft Pattern Transfer Elements 366 13. 2. 1. 3 Outlook 369 13. 2. 2 Printing 370 13. 2. 2. 1 Microcontact Printing 370 13. 2. 2. 2 Dip - Pen Nanolithography 371 13. 2. 2. 3 Outlook 372 13. 2. 3 Edge Lithography By Nanoskiving 372 13. 2. 3. 1 The Ultramicrotome 374 13. 2. 3. 2 Nanowires With Controlled Dimensions 374 13. 2. 3. 3 Open - And Closed - Loop Structures 374 13. 2. 3. 4 Linear Arrays Of Single - Crystalline Nanowires 375 13. 2. 3. 5 Conjugated Polymer Nanowires 378 13. 2. 3. 6 Nanostructured Polymer Heterojunctions 379 13. 2. 3. 7 Outlook 384 13. 2. 4 Shadow Evaporation 385 13. 2. 4. 1 Hollow Inorganic Tubes 385 13. 2. 4. 2 Outlook 387 13. 2. 5 Electrospinning 389 13. 2. 5. 1 Scanned Electrospinning 390 13. 2. 5. 2 Uniaxial Electrospinning 391 13. 2. 5. 3 Core / Shell And Hollow Nanofibers 391 13. 2. 5. 4 Outlook 393 13. 2. 6 Self - Assembly 393 13. 2. 6. 1 Hierarchical Assembly Of Nanocrystals 394 13. 2. 6. 2 Block Copolymers 395 13. 2. 6. 3 Outlook 397 13. 3 Future Directions: Toward Zero - Cost Fabrication 397 13. 3. 1 Scotch - Tape Method For The Preparation Of Graphene Films 397 13. 3. 2 Patterned Paper As A Low - Cost Substrate 398 13. 3. 3 Shrinky - Dinks For Soft Lithography 398 13. 4 Conclusions 400 Acknowledgments 401 References 401 14 Nanocatalysis For Fuel Production 407Gary Jacobs And Burtron H. Davis 14. 1 Introduction 407 14. 2 Petroleum Refining 408 14. 3 Naphtha Reforming 408 14. 4 Hydrotreating 420 14. 5 Cracking 425 14. 6 Hydrocracking 427 14. 7 Conversion Of Syngas 427 14. 7. 1 Water - Gas Shift 427 14. 7. 2 Methanol Synthesis 438 14. 7. 3 Fischer - Tropsch Synthesis 442 14. 7. 4 Methanation 451 14. 8 Nanocatalysis For Bioenergy 454 14. 9 The Future 461 References 462 15 Surface - Functionalized Nanoporous Catalysts Towards Biofuel Applications 473Brian G. Trewyn 15. 1 Introduction 473 15. 1. 1 Single Site Heterogeneous Catalysis 474 15. 1. 2 Techniques For The Characterization Of Heterogeneous Catalysts 475 15. 2 Immobilization Strategies Of Single Site Heterogeneous Catalysts 476 15. 2. 1 Supported Materials 476 15. 2. 2 Conventional Methods Of Functionalization On Silica Surfaces 478 15. 2. 2. 1 Noncovalent Binding Of Homogeneous Catalysts 478 15. 2. 2. 2 Surface Immobilization Of Catalysts Through Covalent Bonds 480 15. 2. 3 Alternative Synthesis Of Immobilized Complex Catalysts On The Solid Support 487 15. 3 Design Of More Efficient Heterogeneous Catalysts With Enhanced Reactivity And Selectivity 488 15. 3. 1 Surface Interaction Of Silica And Immobilized Homogeneous Catalysts 488 15. 3. 2 Reactivity Enhancement Of Heterogeneous Catalytic System Induced By Site Isolation 491 15. 3. 3 Introduction Of Functionalities And Control Of Silica Support Morphology 494 15. 3. 4 Selective Surface Functionalization Of Solid Support For Utilization Of Nanospace Inside The Porous Structure 497 15. 3. 5 Cooperative Catalysis By Multifunctionalized Heterogeneous Catalyst System 503 15. 3. 6 Tuning The Selectivity Of Multifunctionalized Heterogeneous Catalysts By The Gatekeeping Effect 504 15. 3. 7 Synergistic Catalysis By General Acid And Base Bifunctionalized Msn Catalysts 507 15. 4 Other Heterogeneous Catalyst Systems On Nonsilica Supports 512 15. 5 Conclusion 512 References 513 16 Nanotechnology For Carbon Dioxide Capture 517Richard R. Willis, Annabelle Benin, Randall Q. Snurr, And Özgür Yazaydýn 16. 1 Introduction 517 16. 2 Co2 Capture Processes 522 16. 3 Nanotechnology For Co2 Capture 524 16. 4 Porous Coordination Polymers For Co2 Capture 529 References 553 17 Nanostructured Organic Light - Emitting Devices 561Juo - Hao Li, Jinsong Huang, And Yang Yang 17. 1 Introduction 561 17. 2 Quantum Confinement And Charge Balance For Oleds And Pleds 563 17. 2. 1 Multilayer Structured Oleds And Pleds 563 17. 2. 2 Charge Balance In A Polymer Blended System 564 17. 2. 3 Interfacial Layer And Charge Injection 569 17. 2. 3. 1 I - V Characteristics 570 17. 2. 3. 2 Built - In Potential From Photovoltaic Measurement 571 17. 2. 3. 3 Xps / Ups Study Of The Interface 573 17. 2. 3. 4 Comparison With Cs / Al Cathode 578 17. 3 Phosphorescent Materials For Oleds And Pleds 579 17. 3. 1 Fluorescence And Phosphorescent Materials 579 17. 3. 2 Solution - Processed Phosphorescent Materials 580 17. 4 Multi - Photon Emission And Tandem Structure For Oleds And Pleds 586 17. 5 The Enhancement Of Light Out - Coupling 587 17. 6 Outlook For The Future Of Nanostructured Oleds And Pleds 589 17. 7 Conclusion 590 References 590 18 Electrochromics For Energy - Effi Cient Buildings: Nanofeatures, Thin Films, And Devices 593Claes - Göran Granqvist 18. 1 Introduction 593 18. 2 Electrochromic Materials 595 18. 2. 1 Functional Principles And Basic Materials 595 18. 2. 2 The Role Of Nanostructure 598 18. 2. 3 The Cause Of Optical Absorption 600 18. 2. 4 Survey Over Transparent Conducting Thin Films 603 18. 2. 5 Electrolyte Functionalization 605 18. 3 Electrochromic Devices 607 18. 3. 1 Six Challenges 607 18. 3. 2 Practical Constructions Of Devices: A Brief Survey 608 18. 3. 3 Data On Foil - Based Devices With W Oxide And Ni Oxide 609 18. 4 Conclusions And Remarks 612 References 613 Index 619

Opiniones del Libro

Opiniones sobre Buscalibre

Ver más opiniones de clientes